
Leeland Artra

http://nodsw.com

Present to Seattle Java Users Group November 16, 2010

11/16/2010 © Leeland Artra, Natural Order Development 1

Audience Litmus Test

Raise Your Hands if you have:

 >1 year with Agile Development processes

 >1 year with actual TDD

 >6 months with actual BDD

 Zero or practically no experience with BDD

Any Managers in the audience?

11/16/2010 © Leeland Artra, Natural Order Development 2 of 84

Take Home For Managers

 Return on Training Investment
 Requires +30% Investment in TIME

“Back” ≠ “Engaged”

 Why Spend $5000 with a $0 ROI?
 Course $2000 (seminar fee)

 Travel $1000 (hotel, travel, per diem)

 1 week $2000 (payroll)

 Give directly equivalent time on return
 1 week training = 1 week to put the pieces into play

 1.5 x T for larger conferences

11/16/2010 © Leeland Artra, Natural Order Development 3 of 84

Course Goals

Understand affects of rigorous BDD on
software development

Understand core BDD concepts and
terminology

 Provide guidance for doing BDD

 Design patterns

 Knowing when there is enough testing

 References for further improvements

“Nothing is as simple as we hope it will be.”
– Jim Horning

11/16/2010 © Leeland Artra, Natural Order Development 4 of 84

Where This Came From

 Books
 Design Driven Testing

 Pragmatic Unit Testing

 Internet Articles
 All of C2 on BDD

 Lots of blogs (Dan North, Scott
Ambler, etc.)

 Technical Journals
 Dr. Dobbs

 Experiences
 Road of Hard Knocks

 With much thanks to 5-Hour Energy

(see references at the end)

11/16/2010 © Leeland Artra, Natural Order Development 5 of 84

“Good judgment comes from experience;

experience comes from bad judgment.”
- Jim Horning

Agenda

Development challenges

 Little Project Management Theory

 BDD basics

 Behavior Types

 BDD Examples

 Summary and Future Work

Ask questions at any time

11/16/2010 © Leeland Artra, Natural Order Development 6 of 84

Development Challenges

 In 10 Minutes

Hot button topics

 Please debate out of band

11/16/2010 © Leeland Artra, Natural Order Development 7 of 84

Challenge #1

Cost of Defect Correction
Upstream defects cost 50-200x as much to correct downstream

11/16/2010 © Leeland Artra, Natural Order Development 8 of 84

[Construx, Reprinted with permission]

Challenge #2 Uncertainty

11/16/2010 9 of 84 © Leeland Artra, Natural Order Development

[Reprinted with permission]

Performance Results So Far

Project Failures (CHAOS Report)

11/16/2010 10 of 84 © Leeland Artra, Natural Order Development

0% 20% 40% 60% 80% 100%

1994
1996
1998
2000
2004
2006
2009

Successful Challenged Failed

What are we doing wrong!?

[Eveleens, J. and Verhoef, C. 2010]

Not So Bad - Still a Challenge

11/16/2010 11 of 84 © Leeland Artra, Natural Order Development

Note: Accurate to within +/-7%

 Figures “normalized” to add to 100%
[Ambler, S. 2010]

0% 20% 40% 60% 80% 100%

Ad-hoc

Iterative

Agile

Traditional

Chaos Report

Successful Challenged Failure

Take Home #1

 50-60% Success Rate
 Short Duration Projects

 Iterative Delivery Projects

 A Chain of Short Duration Projects

 Regardless of Project Style
 ~32% Challenged Rate

 ~12% Failure Rate

 Why?

11/16/2010 © Leeland Artra, Natural Order Development 12 of 84

More Than 50% IT Projects

Have Increasing Effort

11/16/2010 © Leeland Artra, Natural Order Development 13 of 84

[McConnell, S. 1998]

Unplanned Work Causes Waste
Late Defect Detection = High Effort Corrections

11/16/2010 © Leeland Artra, Natural Order Development 14 of 84

[McConnell, S. 1998]

Typical Development Project

11/16/2010 15 of 84 © Leeland Artra, Natural Order Development

TIME

Requirements Analysis and
Design

Implementation Testing Production

Cost

Quality

Business
Value

Hidden/Unplanned Costs Increase Total Cost

[McConnell, S. 1998] [O’Connell, F. 2001]

Goal : Higher Profit Projects

Agile / Ad-Hoc / Iterative Projects

11/16/2010 16 of 84 © Leeland Artra, Natural Order Development

TIME

Requirements Analysis and
Design

Implementation Testing Production

Cost

Quality

Business
Value

[Ambler, S. 2004] [O’Connell, F. 2001]

Goal : Higher Profit Projects

Iterative Projects Using BDD

11/16/2010 17 of 84 © Leeland Artra, Natural Order Development

TIME

Requirements Analysis and
Design

Implementation Testing Production

Cost

Quality

Business
Value

[North, D. 2005]

BDD ROI is Less Unplanned Work
Controlled Studies Demonstrate Focus On Quality

Typically Reduces Cost and Shortens Schedule

11/16/2010 © Leeland Artra, Natural Order Development 18 of 84

[McConnell, S. 1998] [Eveleens, J. and Verhoef, C. 2010] [Ambler, S. 2010]

Challenges To TDD?

Where to start?

What to test?

What not to test?

How much to test?

What to call the tests?

Usually done too granularly and in a

programmer’s vernacular

Really bad taste to the word “test”

11/16/2010 © Leeland Artra, Natural Order Development 19 of 84

Development Challenges

Questions?

Development Challenges

 Little Project Management Theory

 BDD basics

 Behavior Types

 BDD Examples

 Summary and Future Work

11/16/2010 © Leeland Artra, Natural Order Development 20 of 84

Natural Planning Model

11/16/2010 © Leeland Artra, Natural Order Development 21 of 84

Development Styles

Test – Last

11/16/2010 © Leeland Artra, Natural Order Development 22 of 84

Story A

Story A

A
 F

a
ils

R
e
w

o
rk

A
 &

 B
 P

a
s
s

Write

Test A A
 F

a
ils

A
 P

a
s
s
e

s

Story B
B

 F
a

ils

R
e
w

o
rk

Write

Test B B
 F

a
ils

B
 P

a
s
s
e

s

A
 F

a
ils

R
e
w

o
rk

Stories A + B

Implement

Stories A & B

A
 &

 B
 F

a
il

R
e
w

o
rk

B
 F

a
ils

A
 F

a
ils

A
 &

 B
 P

a
s
s

Write

Test A & B Rework

R
e
w

o
rk

Stories A & B

vs. Test – First

How Can BDD

Reduce Cost AND Increase Quality?
 Increasing Quality Normally

Means
 More time on design

 More time on testing

 Rigorous process controls

 Reduced Cost Normally Means
 Less resources

 Shorter dead lines

 Reduction of meetings, controls,
and policing

11/16/2010 © Leeland Artra, Natural Order Development 23 of 84

Project Management Research

Shows

 Project Pressure Points Are
1. Scope

2. Quality

3. Resources (People, Cost, Tools / Techniques)

4. Time Allowed

 Successful Projects
 Lead Controlled 2-3 primary pressure points

 Failed Projects
 Lead Controlled < 2-3 primary pressure points

11/16/2010 © Leeland Artra, Natural Order Development 24 of 84

[O’Connell, F. 2001]

Leeland’s Law of Development

A project will only succeed if its fixed success constant (SC)
is less then the function of the limited inputs of Cost, Energy
and Genius reduced by the function of build Time (Tb)
reduced by the max Time allowed (Ta).

SC < ƒ(Energy + Genius + Cost) – ƒ(Tb – Ta)

 Build Time and Cost are directly related to SCOPE

 Build Time is often woefully misjudged

 Energy, Genius and max Time allowed are (mostly) uncontrollable

11/16/2010 © Leeland Artra, Natural Order Development 25 of 84

 Add Energy
 Jazz Everyone Up
 Very limited effectiveness overall

 BDD increases energy

 Add Resources
 Has been known to work

 Increase resources (people) possibly reducing
Time to Build

 Diminishing point of return

 You Can Work Smarter (Add to Genius)
 BDD improves Genius

Ways To Increase Project Success

11/16/2010 © Leeland Artra, Natural Order Development 26 of 84

(free Jolt Cola , 5-hour Energy)

Processes(Time Allowed + Resources)

Scope is a major control variable!

Working Smarter

11/16/2010 © Leeland Artra, Natural Order Development 27 of 84

BDD

Improving Quality

 Controlled research studies [Erdogmus, H. 2005]

 Code Quality is directly related to number of tests

 Test-First methodologies produce more tests per unit of
work than any other methods

 Many consider tests as overhead [Ambler, S. 2010]

 Skip it in favor of visual inspection

 Delegate to Quality Assurance Team

 BDD is a rigorous Test-First methodology

11/16/2010 © Leeland Artra, Natural Order Development 28 of 84

BDD’s Favorable Influence on

Project Pressure Points

 Scope
 Requirements Specification

 Build Time
 Enhancing Genius
 Technology

 Processes

 Training/Skills

 Improved Productivity
 Increased Energy

 Quality
 Statistically Better

11/16/2010 © Leeland Artra, Natural Order Development 29 of 84

SC < ƒ(Energy + Genius + Cost) – ƒ(Tb – Ta)

1. Scope

2. Quality

3. Resources

4. Time

Total Cost of Ownership

“Delivery” ≠ “End of Cost”

 Software has a 10-20 Year Life

 60% > of TCO is in Maintenance

 Writer Rarely = Maintainer
 Developers tend to roll on to new projects once initial

acceptance is done

 BDD Reduces TCO
 More Tests = Less Defects

 Higher Quality Tests = Easier Maintenance

 Behavioral Specifications = Better Understanding

11/16/2010 © Leeland Artra, Natural Order Development 30 of 84

[O’Connell, F. 2001] [Kane 2010]

#1 Way To Increase TCO

Claim Code Is Documentation

Larger Code Base = Greater Risk of Emergent Properties

Code Will Never Tell You:

 “It Has To Be This Way”; or

 “It Happens To Look This Way”

 BDD’s Process Provides Answers

11/16/2010 © Leeland Artra, Natural Order Development 31 of 84

Achieving High Quality Code

 Coding by contract
 Require contract for every method

 Explicit definition of secrets

 Code style requirements with teeth
 Upper bounds on cyclomatic complexity

 Upper bounds on fan-in / fan-out

 Code coverage / code analysis bounds

 BDD
 Provides contracts

 Keeps complexity down

11/16/2010 © Leeland Artra, Natural Order Development 32 of 84

Cyclomatic Complexity

Measure of the number of logical paths

11/16/2010 © Leeland Artra, Natural Order Development 33 of 84

Fan-in / Fan-out Complexity

 Fan-In

 Number of local flows into that procedure

 number of data structures accessed

 Fan-out

 Number of local flows

out of that procedure

 number of data structures

updated

11/16/2010 © Leeland Artra, Natural Order Development 34 of 84

2 1 3

4

5

1

2
3

4

Code Analytics

Computing and tracking

 Cyclomatic Complexity

 Fan-In

 Fan-Out

 Lines of Code (LOC)

 Lines of Test (LOT)

 Code Coverage

11/16/2010 © Leeland Artra, Natural Order Development 35 of 84

Applies to Entire Process Spectrum

11/16/2010 36 of 84 © Leeland Artra, Natural Order Development

[Tockey, S. 2005]

Test First Benefits for Developers

 Improved design
 Writing test focuses mind on what needs to be done

 Improved productivity
 Know when it is "done" and move on

 Improved quality
 More Tests Per Unit of Work

 Code is constantly cross checked

 Reduced TCO
 Future changes can be done without fear of what might

break

11/16/2010 © Leeland Artra, Natural Order Development 37 of 84

Project Management Theory

Questions?

Development challenges

Little Project Management Theory

 BDD basics

 Behavior Types

 BDD Examples

 Summary and Future Work

11/16/2010 © Leeland Artra, Natural Order Development 38 of 84

Behavior Driven Design

Came from Agile & Extreme Programming
movements

 Feedback becomes test "stories"

 Feedback occurs in short iterations

 Ruthless refactoring

 The Point is to drive the design and build using
functionality and feedback

 As project progresses you end
up with more and more functional
tests

11/16/2010 © Leeland Artra, Natural Order Development 39 of 84

BDD Process

 Basic Rules Still Apply

 Requirements

 Design

 Construction

 Test

Good Testing

Skills Still Needed

11/16/2010 © Leeland Artra, Natural Order Development 40 of 84

Story

Understand

Add a Single Test

Add Production Code for Test

Run all Tests

Result

Rework

Story

Complete?

Next Story

Scenario

“Motion” ≠ “Progress”

Writing Code Does Not Guarantee:

 Required Business Behaviors Are Addressed

 Project Goals Are Being Met

 Code Will Be Understandable

 Testing Does Not Guarantee:

 All Requirements Are Fulfilled

 The Code Is Understandable

 The Tests Fully Explain What is Being Modeled

 The Results Are Well Designed

11/16/2010 © Leeland Artra, Natural Order Development 41 of 84

Success = Consistently Good

 Consistent work enhances skills

 Easy to be great
 Perfect moments

 Statistical accidents (rolling doubles just at the right time)

 Cannot count on them occurring when needed

 Harder to be consistently good
 day in and day out

 regardless of circumstances

 Every Situation is unique

Never let on your bombing: “this is funny, you just haven't

gotten it yet” - Steve Martin

11/16/2010 © Leeland Artra, Natural Order Development 42 of 84

[Martin, S. 2007]

How to be Consistently Good

 Always work from a plan

 Prioritize work

 Do incremental development

 Be present

 Never assume, understand what is needed

 Rely on reliable things

 Document all assumptions

 Test assumptions then test behavior

 Past performance is no guarantee

 Tangible daily results

11/16/2010 © Leeland Artra, Natural Order Development 43 of 84

[Hunt, A. & Thomas, D. 2003]

“If I had eight hours to chop down a tree,

I'd spend six hours sharpening my ax”

- Abraham Lincoln

Shhh It’s a Secret

BDD = Vocab.Translate(TDD) + Min(Process);

 BDD uses Business Domain Terminology

 Translation
 “Behavior” is more meaningful than “test”

 “Should” is focusing and expressive

 Use Template of “The class should do something”

 Requirements = Behaviors

 Test Case = Story

 Test Methods = Scenarios

 Unit Tests = Steps

11/16/2010 © Leeland Artra, Natural Order Development 44 of 84

BDD is

 Small set of project management techniques

 TDD wrapped in Requirements Analysis

 Ubiquitous business domain language

Story: [Title]
 As a [role]
 I would like [feature]
 So that [benefit]

Scenario: [Title]
Given [context]
When [event]
Then ensure [outcome]

11/16/2010 © Leeland Artra, Natural Order Development 45 of 84

Stories

Story: [Title]
 As a [role]
 I would like [feature]
 So that [benefit]

 Specific Narrative

 Clearly Identifies
 Actor

 Feature / Behavior

 Business Value

11/16/2010 © Leeland Artra, Natural Order Development 46 of 84

Scenarios

Scenario: [Title]
 Given [context]
 AND [more context]
 ...
 When [event]
 AND [another event]
 ...
 Then ensure [outcome]
 AND ensure [another outcome]
 ...

 “ensure” identifies responsibilities of the scenario

 Titles are active

 Results use “should” or “should not”

11/16/2010 © Leeland Artra, Natural Order Development 47 of 84

Running BDD

 Configuration-by-convention approach

 ConfigurableEmbedder
 Story or Stories with module specified settings

 Direct TDD style

 AnnotatedEmbedder
 Configuration and controls set via annotations

 Direct TDD annotation style

 AnnotationBuilder
 Direct manipulation of the annotation sets

 Dependency injection

11/16/2010 © Leeland Artra, Natural Order Development 48 of 84

BDD Promotes Programing With

Purpose
 Use defined business domain vocabulary

 Choose good names
 Nouns for objects/modules

 Adjectives or generic nouns for interfaces

 Verbs or better verb phrases for methods

 Test First / Only Tests determine what to write

 Write Tests and User Docs with Assumptions

 Refactor to eliminate all code smells

 Let the compiler be your to do list

 “No Comment” (mostly)

 Do the Simplest Thing

11/16/2010 © Leeland Artra, Natural Order Development 49 of 84

What Is The Simplest Thing?

 All Of The Tests Run

No Duplicate Code

Clarity Of Code

Minimal Code

11/16/2010 © Leeland Artra, Natural Order Development 50 of 84

Experience = Better Results

Controlled studies showed Test-First

improvements were greater for higher skilled

developers

 The larger the group the greater the leveling of

results

Consistently

 More productive

 More reliable quality levels

11/16/2010 © Leeland Artra, Natural Order Development 51 of 84

BDD Benefits for Developers

 Improved design
 Writing test focuses mind on what needs to be done

 Improved productivity
 Know when it is "done" and move on

 Know what to do next

 Improved quality
 More Tests Per Unit of Work

 Code is constantly cross checked

 Reduced TCO
 Future changes can be done without fear of what might break

 Requirements, Tests, and Code provide context for updates

11/16/2010 © Leeland Artra, Natural Order Development 52 of 84

BDD Results

Higher individual productivity

Consistently good quality results

Rapid feedback learning of business needs

Reduced development effort

Daily positive results

11/16/2010 © Leeland Artra, Natural Order Development 53 of 84

BDD Corrects TDD Issues

 Where to start?
 Business Requirement Stories

 Highest Priority Behavior

 What to test?
 Everything that can be expressed as Should or Should Not

 What not to test? (Should it?)
 Anything that doesn’t fit into the context

 How much to test?
 All the behaviors needed to meet the Story Requirement

 What to call the tests?
 ShouldDoX

 ShouldFailIfY

11/16/2010 © Leeland Artra, Natural Order Development 54 of 84

Secrets of Success

 Preparedness

 Anticipating the risks

 Knowing how to react

 Knowing where and when to act

Doing what is needed with surgical precision

11/16/2010 © Leeland Artra, Natural Order Development 55 of 84

BDD Basics Questions?

Development challenges

Little Project Management Theory

BDD basics

 Beha ior Types Testing Basics

 BDD Examples

 Summary and Future Work

11/16/2010 © Leeland Artra, Natural Order Development 56 of 84

Back to Basics – Test Case

Describes inputs / trigger events

Describes expected results

Describes prerequisites and environment

 Authoritative source for defect detection

11/16/2010 © Leeland Artra, Natural Order Development 57 of 84

Back to Basics – Defect

 Any behavior that reduces value

 Behavioral Defect:

 Application does not do what is reasonably

expected by an end user

 Specification Defect:

 An inconsistency between application

behavior and specification’s description

of expected behavior

11/16/2010 © Leeland Artra, Natural Order Development 58 of 84

Back to Basics – Classifications

 Expectation Based
 Positive Case : Verify expected behavior
 Provided by the requirements

 Negative Case : Challenge assumptions (inputs,
unanticipated states, etc.)
Usually not provided by requirements

 Perspective Based
 Functional - (black box) analysis of input/output

 Structural – (Glass box) analysis of flow, algorithms,
design, etc.

 Phase
 Acceptance, Beta, System, Regression, Integration, Unit

11/16/2010 © Leeland Artra, Natural Order Development 59 of 84

Back to Basics – Types of Testing

 Acceptance: minimum behaviors provided/tested by client

 System: [automated] process to diff vs. original requirements

 Integration: inter-component interaction & communication

 Unit/Programmer: small method testing

 Regression: System test suites confirm legacy behavior

and new features

 Beta: Exposing end users to identify defects

11/16/2010 © Leeland Artra, Natural Order Development 60 of 84

Back to Basics – A Good Test

Repeatable / Idempotent

 Atomic

 Simple to Perform (fast is good too)

 Fails for one reason only

 Is Unique for a specific behavior

 Improves test coverage (not redundant)

11/16/2010 © Leeland Artra, Natural Order Development 61 of 84

Back to Basics – Fixture

 Test Case including:

 All preconditions

 All assumptions

 The Runtime context including setup

 Fixture is an instantiated running Test

 In BDD a Fixture is a Scenario

 11/16/2010 © Leeland Artra, Natural Order Development 62 of 84

BDD Basics Questions?

Development challenges

Little Project Management Theory

BDD basics

Beha ior Types Testing Basics

 BDD Examples

 Summary and Future Work

11/16/2010 © Leeland Artra, Natural Order Development 63 of 84

Where Stuff Goes

Using Maven For Example (not required)

∕pom.xml (the maven project descriptor)

∕src

∕ main

∕java (app classes)

∕resources (properties-files)

∕ test

∕java (test code)

∕resources (testing properties-files)

11/16/2010 © Leeland Artra, Natural Order Development 64 of 84

Minimum Files Setup

1. pom.xml

2. src/test/java/classcost/PresenterIsGivenClassCostStory.java

3. src/test/java/classcost/ClassCostSteps.java

4. src/test/resources/classcost/presenter_is_given_class_cost_story.story

11/16/2010 © Leeland Artra, Natural Order Development 65 of 84

Example Story
presenter_is_given_class_cost_story.story

Story: calculate the effective business cost of a
meeting

As a Presenter

I can compute the meeting business cost

So that the ROI for a meeting may be known

Scenario: presenter enters class count of 10

Given an average hourly rate of 50.00

When attendance count is set to 10

Then ensure class cost should be 500.00

11/16/2010 © Leeland Artra, Natural Order Development 66 of 84

The Class 1 of 2
PresenterIsGivenClassCostStory.java

public class PresenterIsGivenClassCostStory extends JUnitStory {

 // the configuration, starting from default MostUsefulConfiguration, and changing only what is needed

 @Override

 public Configuration configuration() {

 return new MostUsefulConfiguration()

 // where to find the stories

 .useStoryLoader(new LoadFromClasspath(this.getClass().getClassLoader()))

 // CONSOLE and TXT reporting

 .useStoryReporterBuilder(new
StoryReporterBuilder().withDefaultFormats().withFormats(Format.CONSOLE, Format.TXT));

 }

 // Here we specify the steps classes

 @Override

 public List<CandidateSteps> candidateSteps() {

 return new InstanceStepsFactory(configuration(), new ClassCostSteps()).createCandidateSteps();

 }

}

11/16/2010 © Leeland Artra, Natural Order Development 67 of 84

Class 2 of 2
ClassCostSteps.java

public class ClassCostSteps {

}

11/16/2010 © Leeland Artra, Natural Order Development 68 of 84

The POM part 1 of 2

<dependencies/>
<properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 </properties>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.jbehave</groupId>

 <artifactId>jbehave-maven-plugin</artifactId>

 <version>3.1.1</version>

 </dependency>

 </dependencies>

11/16/2010 © Leeland Artra, Natural Order Development 69 of 84

The POM part 2 of 2

<build/>
<plugin>

 <groupId>org.jbehave</groupId>

 <artifactId>jbehave-maven-plugin</artifactId>

 <version>3.1.1</version>

<executions> <execution>

 <id>run-stories-as-embeddables</id>

 <phase>test</phase>

 <configuration>

 <scope>test</scope>

 <includes> <include>**/*Story.java</include> </includes>

 <systemProperties>

 <property> <name>java.awt.headless</name> <value>true</value> </property>

 </systemProperties>

 <ignoreFailureInStories>true</ignoreFailureInStories>

 <ignoreFailureInView>false</ignoreFailureInView>

 </configuration>

 <goals> <goal>run-stories-as-embeddables</goal> </goals>

</execution> </executions> </plugin>

11/16/2010 © Leeland Artra, Natural Order Development 70 of 84

The Results

[INFO] Running story
com/nodsw/bddcourse/classcost/presenter_is_given_class_cost_story.story

Story: calculate the effective business cost of a meeting

As a Presenter

I can compute the meeting business cost

So that the ROI for a meeting may be known

(com/nodsw/bddcourse/classcost/presenter_is_given_class_cost_story.story)

Scenario: presenter enters class count of 10

Given an average hourly rate of 50.00 (PENDING)

When class attendance count is set to 10 (PENDING)

Then ensure the class cost should be 500.00 (PENDING)

[INFO] Reports view generated with 1 stories

containing 1 scenarios (of which 0 failed)

11/16/2010 © Leeland Artra, Natural Order Development 71 of 84

BDD frameworks built on xUnit

 Jbehave – Java

Cucumber – Ruby

 Lettuce – Python

 Lots more to play with

11/16/2010 © Leeland Artra, Natural Order Development 72 of 84

Class 2 of 2 Ready
ClassCostSteps.java

import org.jbehave.core.annotations.Given;

import org.jbehave.core.annotations.Then;

import org.jbehave.core.annotations.When;

public class ClassCostSteps {

 @Given("an average hourly rate of $hourlyRate")

 public void setHourlyRate (double hourlyRate) {

 }

 @When("class attendance count is set to $classSize")

 public void theClassSizeIs (int classSize) {

 }

 @Then("ensure the class cost should be $classCost")

 public void theClassCostShouldBe (double classCost) {

 }

11/16/2010 © Leeland Artra, Natural Order Development 73 of 84

Now It Looks Like Working

[INFO] Running story
com/nodsw/bddcourse/classcost/presenter_is_given_class_cost_story.story

Story: calculate the effective business cost of a meeting

As a Presenter

I can compute the meeting business cost

So that the ROI for a meeting may be known

(com/nodsw/bddcourse/classcost/presenter_is_given_class_cost_story.story)

Scenario: presenter enters class count of 10

Given an average hourly rate of 50.00

When class attendance count is set to 10

Then ensure the class cost should be 500.00

[INFO] Reports view generated with 1 stories

containing 1 scenarios (of which 0 failed)

11/16/2010 © Leeland Artra, Natural Order Development 74 of 84

Framework Done, Now Roll On

 Enter Scenarios as you

think of them

 The Compiler will tell

what else is needed

11/16/2010 © Leeland Artra, Natural Order Development 75 of 84

Story: calculate the effective business cost of a meeting
As a Presenter
I can compute the meeting business cost
So that the ROI for a meeting may be known

Scenario: presenter enters meeting details directly
Given an empty meeting
When attendance count is set to 10
And average hourly rate is set to 50.00
And meeting length is set to 1
Then ensure meeting cost should be 500.00

Scenario: presenter does not provide hourly rate
Given an empty meeting
When attendance count is set to 10
And meeting length is set to 1
Then ensure meeting cost should not be available

Scenario: presenter enters series of hourly rates for average
Given an empty meeting
And no meeting count
When presenter adds attendee with hourly rate of:
|hourlyRate|
| 45.0 |
| 30.0 |
| 10.0 |
And meeting length is set to 1
Then ensure meeting cost should be 85.00
And meeting count should be 3

BDD Questions?

Development challenges

Little Project Management Theory

BDD basics

Beha ior Types Testing Basics

BDD Examples

 Summary and Future Work

11/16/2010 © Leeland Artra, Natural Order Development 76 of 84

Summary

 Project Success Depends on

 Understanding the requirements

 Properly scoping work (on going)

 Robust Code Stewardship

 BDD (Test First Programmers)

 Write More Tests per Unit of Work

 Improved productivity

 Consistent Good Quality of code

11/16/2010 © Leeland Artra, Natural Order Development 77 of 84

Future Work

Mocks

Design Patterns

 Inversion of Control (IOC) / Dependency Injection

Requirements Analysis

 Agile Modeling

Diagramming

 Agiledocs and Jbehave

11/16/2010 © Leeland Artra, Natural Order Development 78 of 84

Take Homes

 Iterative projects have better success chance

Write user guides and behaviors with
assumptions

 Strive for consistently good

 Study patterns

 when & how to use

 when not to use

Use BDD style regardless of pressures

 it makes you iterative

11/16/2010 © Leeland Artra, Natural Order Development 79 of 84

Where To Start (Roughly in Order)

 Dan North’s “Introducing BDD” online article (the actual beginning of BDD) http://blog.dannorth.net/introducing-bdd/

 A Beginners Guide to Dependency Injection by Dhananjay Nene (online article)
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection

 Spring 3 Tutorial: Setting Up & Configuring The Environment by Jason Tee (online article)
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment

 Inversion of Control Containers and the Dependency Injection pattern by Martin Fowler (online article)
http://martinfowler.com/articles/injection.html

 C2 “Extreme Programming Roadmap” http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap

 Test-Driven Development: A Practical Guide (book) by David Astels http://www.amazon.com/Test-Driven-
Development-Practical-David-Astels/dp/0131016490

 Test Driven Development By Example by Kent Beck (book) http://www.amazon.com/Test-Driven-Development-Kent-
Beck/dp/0321146530

 Pragmatic Unit Testing in Java with Junit (book) http://oreilly.com/catalog/9780974514017/

 The Pragmatic Programmer by Andy Hunt and Dave Thomas (book) http://www.amazon.com/Pragmatic-Programmer-
Journeyman-Master/dp/020161622X

 Data Structures and Algorithm Analysis in Java (2nd Edition) by Mark A. Weiss (book)
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139

 Refactoring: Improving the Design of Existing Code by Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts (book) http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672

 Implementation Patterns by Kent Beck (book) http://www.amazon.com/Implementation-Patterns-Kent-
Beck/dp/0321413091

 Software Project Survival Guide by Steve McConnell (book) http://www.amazon.com/Software-Project-Survival-Guide-
Practices/dp/1572316217

 Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development
by Craig Larman (book) http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062

11/16/2010 © Leeland Artra, Natural Order Development 80 of 84

http://blog.dannorth.net/introducing-bdd/
http://blog.dannorth.net/introducing-bdd/
http://blog.dannorth.net/introducing-bdd/
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://www.theserverside.com/tutorial/Spring-30-Tutorial-Setting-Up-Configuring-The-Environment
http://martinfowler.com/articles/injection.html
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Practical-David-Astels/dp/0131016490
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
http://oreilly.com/catalog/9780974514017/
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Data-Structures-Algorithm-Analysis-Java/dp/0321370139
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://www.amazon.com/Implementation-Patterns-Kent-Beck/dp/0321413091
http://www.amazon.com/Implementation-Patterns-Kent-Beck/dp/0321413091
http://www.amazon.com/Implementation-Patterns-Kent-Beck/dp/0321413091
http://www.amazon.com/Implementation-Patterns-Kent-Beck/dp/0321413091
http://www.amazon.com/Implementation-Patterns-Kent-Beck/dp/0321413091
http://www.amazon.com/Implementation-Patterns-Kent-Beck/dp/0321413091
http://www.amazon.com/Implementation-Patterns-Kent-Beck/dp/0321413091
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Software-Project-Survival-Guide-Practices/dp/1572316217
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062
http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062

Highly Recommend

Construx Software Seminars

 Developer Testing Boot Camp

 Requirements Boot Camp

 Software Estimation in Depth

 Object-Oriented Requirements Analysis and Design

Using the UML

 http://construx.com/

11/16/2010 © Leeland Artra, Natural Order Development 81 of 84

http://construx.com/Page.aspx?nid=15&id=49
http://construx.com/Page.aspx?nid=15&id=49
http://construx.com/Page.aspx?nid=15&id=41
http://construx.com/Page.aspx?nid=15&id=41
http://construx.com/Page.aspx?nid=15&id=32
http://construx.com/Page.aspx?nid=15&id=32
http://construx.com/Page.aspx?nid=15&id=43
http://construx.com/Page.aspx?nid=15&id=43
http://construx.com/Page.aspx?nid=15&id=43
http://construx.com/Page.aspx?nid=15&id=43
http://construx.com/

Contributors

 Jon Wilmoth II, Development Senior Expert, QP PGM
Program Management, Amdocs Inc. Seattle, Washington
(jon.wilmoth@amdocs.com)

 Jason Pringle, Senior Software Architect, Product
Engineering, Amdocs Inc., Seattle, Washington
(jpringle@amdocs.com)

 Joseph Wright, Infra Senior Subject Matter Expert,
Application Systems, Amdocs Inc., Seattle, Washington
(robert.wright@amdocs.com)

 Maurizio Calabrese, Infra Group Leader, Qpass Infra
Management, Amdocs Inc., Seattle, Washington
(maurizio.calabrese@amdocs.com)

 Construx Software, 10900 NE 8th Street, Suite 1350,
Bellevue, WA 98004. http://construx.com/

11/16/2010 © Leeland Artra, Natural Order Development 82 of 84

mailto:jon.wilmoth@amdocs.com
mailto:jpringle@amdocs.com
mailto:robert.wright@amdocs.com
mailto:maurizio.calabrese@amdocs.com
http://construx.com/

References

1. Ambler, S. (Aug 2, 2010). IT Project Success Rates. Dr. Jobbs Journel.

2. Ambler, S. (2004). The Object Primer 3rd Edition, Agile Model Driven Development with UML 2. Cambridge

University Press.

3. Erdogmus, H. (Jan 2005). On the Effectiveness of Test-First Approach to Programming. IEEE Transactions on

Software Engineering, 31(1) January 2005.

4. Eveleens, J. and Verhoef, C. (2010). The Rise and Fall of the Chaos Report Figures. IEEE Software,

January/February 2010. Retrieved from ProQuest: ProQuest Computing database.

5. Hunt, A. and Thomas, D. (Apr 18, 2003). How to Be a Better Coder. Addison Wesley.

6. Kane (February 25, 2010). The benefits of TDD are neither clear nor are they immediately apparent. Retrieved

October 28, 2010 from http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-

immediately-apparent/

7. Martin, S. (Feb 2008). Being Funny, How the pathbreaking comedian got his act together. Smithsonian Magazine,

Retrieved Oct 2009 from http://www.smithsonianmag.com/arts-culture/funny-martin-200802.html .

8. McConnell, S. (1998). Software Project Survival Guide. Microsoft Press.

9. O’Connell, F. (May 2001). How to Run Successful Projects III, The Silver Bullet. Addison-Wesley.

10. Rebecca J, W. (Feb 1, 2007). Driven to ... Discovering Your Design Values. IEEE Software, 24(1), 9. Retrieved from

ProQuest: ProQuest Computing database.

11. Tockey, S. (2006). Object Oriented Requirements Analysis and Design Using UML, week training course. Construx

http://construx.com/

11/16/2010 © Leeland Artra, Natural Order Development 83 of 84

http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.scrumology.com/2010/agility/the-benefits-of-tdd-are-neither-clear-nor-are-they-immediately-apparent/
http://www.smithsonianmag.com/arts-culture/funny-martin-200802.html
http://www.smithsonianmag.com/arts-culture/funny-martin-200802.html
http://www.smithsonianmag.com/arts-culture/funny-martin-200802.html
http://www.smithsonianmag.com/arts-culture/funny-martin-200802.html
http://www.smithsonianmag.com/arts-culture/funny-martin-200802.html
http://www.smithsonianmag.com/arts-culture/funny-martin-200802.html
http://www.smithsonianmag.com/arts-culture/funny-martin-200802.html
http://construx.com/

Thank You!

Always Available for a cup of coffee
For more information, contact:

Leeland Artra
Leeland . Artra at Amdocs . Com
Leeland at NODSW . Com

Amdocs
2211 Elliott Avenue, Suite 400
Seattle, Washington 98121
United States
+1.206.447.6000 Phone
+1.206.447.0669 Fax

Technical Site: http://nodsw.com

11/16/2010 © Leeland Artra, Natural Order Development 84 of 84

Figure Art Licensed from Screen Beans http://screenbeans.com

http://nodsw.com/
http://nodsw.com/
http://screenbeans.com/

